浏览:次 2019-01-28 08:38
[摘要];随着我国高速铁路的发展,硬横跨已逐渐成为接触网体系支持结构的使用趋势,硬横跨结构的安全直接关系到国家电气化铁路运行的可靠性,而风荷载是威胁其安全的主要荷载之一。本文基于有限元理论,考虑结构体系的协同工作,建立硬横跨结构―索共同作用的三维有限元模型,利用ANSYS软件,对不同设计风速作用下接触网硬横跨结构进行响应分析,得到结构的受力机理及规律,在此基础上分别考虑承力索及张力变化对硬横跨结构响应的影响,得出了影响其抗风性能的主要因素,为硬横跨结构的合理设计提供理论依据。
[关键词];硬横跨,承力索,风荷载,有限元
接触网是高速铁路运营最为直接相关的架空设备,由接触悬挂、支持结构、承力索等部分组成。随着高速铁路的发展,硬横跨结构已逐渐成为接触网支持结构的发展趋势,由于所处环境特殊,所以使得接触网硬横跨成为整个牵引供电系统最为薄弱的环节之一【1】。由于接触网结构跨距较大,自重轻,结构柔性大,且接触网悬挂属于加载张力的柔索系统,且受电弓滑动与之接触。所以,风荷载对接触网体系的安全性和技术方案有决定性的影响,对结构的正常使用起着决定性的作用,是接触网结构分析中的控制荷载之一【2】。
本文以我国某时速200~350公里客运专线铁路接触网硬横跨结构为研究对象,依据结构的组成及工作状况,建立了硬横跨―索共同作用体系的三维有限元模型,以最大限度上模拟其真实受力状况。本文建立的硬横跨―索共同体系三维有限元模型包括了3榀硬横跨和2跨承力索,即三跨两索模型[5]。接触网结构硬横跨支柱、横梁均为矩形角钢格构式,硬横跨主材为角钢,在端部采用螺栓连接,四肢角钢通过缀条连接在一起,材质均采用Q235钢【3】。
实际工程中,承力索和导线之间通过吊弦互相连接,跨度为65m,为了简化建模,本文按照承力索和导线承受风荷载等效的原则,将承力索和导线简化为一根承力索,吊弦和支撑杆分别简化为集中质量单元和弹簧单元,将其质量加到承力索上,可得到承力索的空间位形方程。根据国内、外文献的研究,当悬索的垂跨比(弧垂比跨距)等于或小于1/8时为所谓扁平悬索。扁平悬索在平面内的运动可由线性理论分析计算。大跨越接触网承力索的垂跨比一般都小于并较接近于1/8。这时,承力索的张力引起的变形对承力索的运动方程和动力特性影响很小,可忽略不计。这样,承力索可合理地简化为一个铰接的多连杆体系,各杆可视为刚性的,导线的质量分别集中在各铰处。所以可将承力索和导线简化为杆单元,吊弦和支撑杆分别简化为集中质量单元和弹簧单元。选择ANSYS库中编号为LINK10的杆单元模拟承力索,该单元是一种带预拉力的直线单元,可以模拟几何大变形,常被用于模拟松弛的索或链结构。本文分别以跨度为21m、26m、31m、36m和41m的客运专线接触网硬横跨体系为研究对象【4】。
根据文献限于篇幅,取跨度居中具有代表性的31m六股道硬横跨为研究对象,分别将风偏设计风速()、结构设计风速()、谷口、桥隧处风速()根据公式计算出硬横跨各结构所承受的风荷载,并将其均布加到结构各节点上,在ANSYS中分析其在风荷载作用下的结构响应。具体结果见表1。
由表1可知,当为风偏设计风速时,硬横跨柱顶节点水平最大位移为5.91mm,满足《新建时速300~350公里客运专线铁路设计暂行规定》关于柱顶处垂直线路方向的水平挠度不超过支柱高度的1.5/100,即150mm,横梁跨中竖向最大位移为24.73mm,满足横梁竖向最大挠度不超过硬横梁跨度的1/360,即86mm。接触线水平最大偏移量为224.03mm,满足接触线距受电弓中心的最大水平偏移值不大于450mm的规定,但由于接触线水平位移已超过200mm,偏移量较大,机车在此风速下行驶有一定的危险性,所以在达到风偏设计风速时,机车应限速行驶。主材发生最大拉应力的单元位于右柱顶外侧,应力值为25.2MPa,发生最大压应力的单元位于右柱顶内侧偏下,应力值为-25.5MPa。
目前相关的技术规范和标准